ニュートリノ
ニュートリノ | |
---|---|
型数 | 3(ν e、ν μ、ν τ) |
組成 | 素粒子 |
粒子統計 | フェルミ粒子 |
グループ | レプトン |
世代 | 第一、第二、第三世代 |
相互作用 | 弱い相互作用 重力相互作用 |
反粒子 | ν e、ν μ、ν τ |
記号 | ν e、ν μ、ν τ |
質量 | あり |
電荷 | 0 |
色荷 | 持たない |
スピン | 1⁄2 |
バリオン数 | 0 |
ニュートリノ(英: neutrino[注釈 1])は、素粒子のうちの中性レプトンの名称。中性微子(ちゅうせいびし)とも書く[1]。電子ニュートリノ・ミューニュートリノ・タウニュートリノの3種類もしくはそれぞれの反粒子をあわせた6種類あると考えられている。ヴォルフガング・パウリが中性子のβ崩壊でエネルギー保存則と角運動量保存則が成り立つように、その存在仮説を提唱した。「ニュートリノ」の名はβ崩壊の研究を進めたエンリコ・フェルミが名づけた。フレデリック・ライネスらの実験により、その存在が証明された。
目次
1 性質
1.1 相互作用
1.2 反粒子
2 仮説と検証の歴史
3 性質と反応
3.1 質量
3.2 カイラリティ
4 光速より速いとされた実験結果とその撤回
4.1 実験内容
4.2 実験直後からの懐疑的意見・否定的意見
5 脚注
5.1 注釈
5.2 出典
6 関連項目
7 外部リンク
性質
フェルミオン | 記号 | 質量** |
---|---|---|
第一世代 | ||
電子ニュートリノ | νedisplaystyle nu _e | <2.5eVdisplaystyle <2.5eV |
反電子ニュートリノ | ν¯edisplaystyle overline nu _e | <2.5eVdisplaystyle <2.5eV |
第二世代 | ||
ミューニュートリノ | νμdisplaystyle nu _mu | <170keVdisplaystyle <170keV |
反ミューニュートリノ | ν¯μdisplaystyle overline nu _mu | <170keVdisplaystyle <170keV |
第三世代 | ||
タウニュートリノ | ντdisplaystyle nu _tau | <18MeVdisplaystyle <18MeV |
反タウニュートリノ | ν¯τdisplaystyle overline nu _tau | <18MeVdisplaystyle <18MeV |
ニュートリノは電荷を持たず、12ℏdisplaystyle beginmatrixfrac 12hbar endmatrixのスピンを持つ。また、質量は非常に小さいが、ゼロではない。
ニュートリノには電子ニュートリノ (νedisplaystyle nu _e)、ミューニュートリノ (νμdisplaystyle nu _mu )、タウニュートリノ (ντdisplaystyle nu _tau ) の3世代とそれぞれの反粒子が存在する。これらは電子、ミュー粒子、タウ粒子と対をなしている[注釈 2]。
相互作用
ニュートリノは強い相互作用と電磁相互作用がなく、弱い相互作用と重力相互作用でしか反応しない。ただ、質量が非常に小さいため、重力相互作用もほとんど反応せず、このため他の素粒子との反応がわずかで、透過性が非常に高い。
そのため、原子核や電子との衝突を利用した観測が難しく、ごく稀にしかない反応を捉えるために高感度のセンサや大質量の反応材料を用意する必要があり、他の粒子に比べ研究の進みは遅かった。
反粒子
電荷を持たない粒子であるため、中性のパイ中間子のようにそれ自身が反粒子である可能性がある。ニュートリノの反粒子がニュートリノ自身と異なる粒子であるか否かは現在でも未解決の問題である。
仮説と検証の歴史
アルファ崩壊の場合、アルファ粒子(アルファ線)と新しく出来た原子核の質量との合計は、崩壊前の原子核の質量よりも小さくなる。これは、放出されたアルファ粒子の運動エネルギーが、崩壊前の原子核の質量から得られているためである。
ベータ崩壊の場合は、崩壊後の運動エネルギーの増加が質量の減少より小さかった。そのため一部のエネルギーが消えてしまったように見え、研究者の間で混乱が生じた。ニールス・ボーアは放射性崩壊現象ではエネルギー保存の法則が破れると主張した。
一方、ヴォルフガング・パウリは、エネルギー保存の法則が成り立つようにと、β崩壊では(観測されない)電荷については中性の粒子がエネルギーを持ち去っているという仮説を1930年末に公表した[注釈 3]。また、1932年に中性子が発見されたのをきっかけに、エンリコ・フェルミはベータ崩壊のプロセスを「ベータ崩壊は原子核内の中性子が陽子と電子を放出しさらに中性の粒子も放出する」との仮説を発表した。また、質量は非常に小さいか、もしくはゼロと考えられた。そのため、他の物質と作用することがほとんどなく、検出には困難を極めた。
ギュラ・チカイはベリリウムを中性子で照射して得たヘリウム6を霧箱に導く装置を開発し、ヘリウム6がβ崩壊
6He→6Li+e−+ν¯e+3.6MeVdisplaystyle ^6mathrm He rightarrow ^6mathrm Li +e^-+bar nu _e+3.6,mathrm MeV
する過程を撮影することに1956年10月に成功した[2][3][4]。
1953年から1959年にかけて行われた フレデリック・ライネスとクライド・カワンの実験により、初めてニュートリノが観測された。この実験では、原子炉から生じたニュートリノビームを水に当て、水分子中の原子核とニュートリノが反応することにより生じる中性子と陽電子を観測することで、ニュートリノの存在を証明した。
1962年、レオン・レーダーマン、メルヴィン・シュワーツ、ジャック・シュタインバーガーらによってνedisplaystyle nu _eとνμdisplaystyle nu _mu が違う粒子であることが実験で確認された。これは、15 GeV の高エネルギー陽子ビームを使ってパイ中間子(πdisplaystyle pi )を作り、ミュー粒子 (μdisplaystyle mu ) とミューニュートリノ (νμdisplaystyle nu _mu ) に崩壊してできたミューニュートリノを標的に当てた。この結果、標的で弱い相互作用によってミュー粒子は生じたが、電子は生成されなかった。
性質と反応
質量
弱い相互作用しかしないこともあって質量が観測できず、質量は0であるとするのが一般的であった。しかし、例えば光子には質量が 0 であるとする理論的根拠が存在するが、ニュートリノについてはそのような理論は無かった。そして、梶田隆章によりニュートリノ振動が観測されたことにより、実際にニュートリノには 0 ではない質量があることが分かった[5]。
ニュートリノ振動は1957年にブルーノ・ポンテコルボにより提唱された。この理論は、k中間子振動から類推された。彼は、その後10年で真空の振動理論の現代的な数学による定式化に取り組んだ。1962年、坂田昌一・牧二郎・中川昌美がニュートリノが質量を持ち、ニュートリノが電子・ミュー・タウの型の間で変化するニュートリノ振動を予測した。
この現象について、1998年6月にスーパーカミオカンデ共同実験グループは、宇宙線が大気と衝突する際に発生する大気ニュートリノの観測から、ニュートリノ振動の証拠を99%の確度で確認した。また、2001年には、太陽から来る太陽ニュートリノの観察からも強い証拠を得た[注釈 4]。
ただし、ニュートリノ振動からは型の異なるニュートリノの質量差が測定されるのみで、質量の値は解らない。しかし、これに先立つ1987年2月23日午後4時35分小柴昌俊による15万光年離れた大マゼラン雲の超新星SN 1987Aからの電子ニュートリノの観測時刻が光学観測との間で理論的に有意な差を観測できなかったことから、極めて小さな上限値(電子の質量の100万分の1以下)が得られており、共同研究チームは3種のニュートリノの質量を発表している。
その後、つくば市にある高エネルギー加速器研究機構 (KEK) からスーパーカミオカンデに向かってニュートリノを発射するK2Kの実験において、ニュートリノの存在確率が変動している状態を直接的に確認し、2004年、質量があることを確実なものとした。
ニュートリノの質量が有限値を持つことは理論研究に大きな影響を与える。まず問題になるのは、これまで各種の提案がされてきた標準理論のうちの一部はニュートリノの質量が 0 であることを前提としている。このため、それらの理論は否定される。また、ニュートリノ振動は、各世代ごとに保存されるとされてきたレプトン数に関して大幅な再検討を促すことになる。
また、ニュートリノには電磁相互作用がないため光学的に観測できず、またビッグバン説では宇宙空間に大量のニュートリノが存在するとされていることから、ニュートリノは暗黒物質の候補のひとつとされていたが、確認された質量はあまりに小さく大きな寄与は否定された。
カイラリティ
実験結果からは誤差の範囲内で、生成され観測される(ほぼ)すべてのニュートリノはスピン角運動量の回転方向 (ヘリシティ、英: helicity )が左巻き、すべての反ニュートリノが右巻きを持っていることを示す。このことはニュートリノに質量はないとした極限では、双方の粒子に考えうる2つのカイラリティ(英: chirality )の1つしか観測されていないことを意味する。このようなカイラリティは素粒子相互作用の標準模型での唯一のものである。
実験結果からは、右巻きニュートリノと左巻き反ニュートリノという相対するパートナーが単に存在しないということも考えられる。そうであれば、観測されるニュートリノと反ニュートリノは実際は全く異なる性質のものということになる。理論的には(大統一理論スケールで)非常に重いもの(シーソー機構を参照)、(ステライルニュートリノのような)弱い相互作用を起こさないもの、あるいはその両方が考えられている。
質量がゼロでないニュートリノの存在は状況をやや複雑にする。ニュートリノは弱い相互作用で生成された固有状態である。しかし質量のある粒子のカイラリティは(みかけの)運動が同じにならない。すなわち、ヘリシティ演算子はカイラリティ演算子とは固有状態を共有しない。自由なニュートリノは左巻きと右巻きのヘリシティ状態が混在して伝搬し、 mν⁄E のオーダで振幅も混在している。ただし、実験的に観測されるニュートリノは常に超相対論的であり (mν ≪ E)、振幅の混在は無視できるほど小さいため振幅の混在はほとんど実験に影響しない。例えば、ほとんどの太陽ニュートリノは 6986160217659999999♠100 keV から6987160217660000000♠1 MeV のオーダのエネルギーを持っており、「誤った」ヘリシティを持ったニュートリノの割合は 6990100000000000000♠10−10 を超えない。[6][7]
光速より速いとされた実験結果とその撤回
2011年9月23日CERNで、観測したニュートリノが光速より速かったという実験結果が発表された[8][9]。「国際研究実験OPERA」のチームが、人工ニュートリノ1万6000個を、ジュネーブのCERNから約730km離れたグラン・サッソのイタリア国立物理学研究所研究施設に飛ばしたところ、2.43ミリ秒後に到着し、光速より60.7ナノ秒(1億分の6秒、ナノは10億分の1)速いことが計測された。1万5000回の実験ほとんどで同じ結果が示された[10][11]。この発表は「質量を持つ物質は光速を超えない」とするアインシュタインの特殊相対性理論に反するため世界的な論争を呼んだ。光より速い物質が存在しないのは、粒子を光速にまで加速するためには無限のエネルギーが必要だということが理由だが、もしこの実験結果が本当だった場合、このニュートリノはエネルギーを必要としない何らかの相転移で超光速になってまた戻ったとする仮説なども考えられた。
OPERAチームは、光速を超える物質が存在しないことを証明する特殊相対論がこれまでの実験と理論でしっかり確立された理論であり、自分たちの実験結果は誤りだと考えていた。そのため結果を発表するのに数か月の内部討論を重ね、実験結果の誤りを探したが、内部討論では誤りを発見できず、科学界での検証を呼びかけた。OPERAは声明の中で「この結果が科学全般に与える潜在的な衝撃の大きさから、拙速な結論や物理的解釈をするべきではない」としていた[12]。
11月18日、OPERAは、ニュートリノビームの長さを短くした再実験によってもほぼ同様の結果が見られたと発表した[注釈 5][13][14]。ただ時間情報は前回と同様GPSを使ったとしている。
その後、ニュートリノの到着側で地上と地下の時計をつなぐ光ケーブルの接続不良やニュートリノ検出器の精度が不十分だった可能性が見つかったため、2012年5月、実験不備を解消した上で再実験を行った。結果、ニュートリノと光の速さに明確な差は出ず実験結果を修正、6月8日にニュートリノ・宇宙物理国際会議で「超光速」の当初報告の正式撤回を発表した[15][16][17]。
実験内容
原論文[9]によると、光速度をcdisplaystyle c、ニュートリノ(平均エネルギー17ギガ電子ボルトのミューオン・ニュートリノ)の速度をVdisplaystyle Vとすると、
(V−c)c=(2.48±0.28±0.30)×10−5displaystyle frac (V-c)c=(2.48pm 0.28pm 0.30)times 10^-5
(0.28displaystyle 0.28は統計誤差、0.30displaystyle 0.30は系統誤差。)
である(有意水準は6.0σdisplaystyle 6.0sigma )。
これから、
V=c×(1+2.48×10−5)=c×1.000 0248=299 799 893 m/sdisplaystyle beginalignedat3V&=ctimes (1+2.48times 10^-5)\&=ctimes 1.000 0248\&=299 799 893 textm/sendalignedat
となり、c=299 792 458 m/sdisplaystyle c=299 792 458 textm/sと比べて、7435 m/s だけ速いことになる。
なお、統計誤差と系統誤差を考慮すると、
Vmin=c×(1+1.90×10−5)=c×1.000 0190=299 798 154 m/sdisplaystyle beginalignedat3V_rm min&=ctimes (1+1.90times 10^-5)\&=ctimes 1.000 0190\&=299 798 154 textm/sendalignedat
光速cdisplaystyle cより、5696 m/s 速い。
Vmax=c×(1+3.06×10−5)=c×1.000 0306=299 801 632 m/sdisplaystyle beginalignedat3V_rm max&=ctimes (1+3.06times 10^-5)\&=ctimes 1.000 0306\&=299 801 632 textm/sendalignedat
光速cdisplaystyle cより、9174 m/s 速いことになる。これは環境の影響や考え得る測定誤差[18]をはるかに超える値であるとされた。
実験直後からの懐疑的意見・否定的意見
当初よりこの実験結果に対する懐疑的意見があった。小柴昌俊が行ったSN 1987Aの観測では光とほぼ同時(発生源からの距離に比して)に届いたニュートリノしか確認されておらず、整合しない。もしニュートリノがOPERAの実験結果と同じくらいの速度であれば、ニュートリノは超新星からの光学観察時刻の8年前に到着していなければならない。2007年にフェルミ研究所におけるMINOS実験[19]で同様の結果が発表されているが、誤差が大きかったという。発表直後は、ニュートリノではなく未知の性質の発見を表しているかどうか注目されていた。また、日本がスーパーカミオカンデで人工ニュートリノ飛行実験[20]をしていることから、日本の実験結果も注目された。
10月6日、CERNのホイヤー所長、高エネルギー加速器研究機構の鈴木厚人機構長、フェルミ研究所のオッドーネ所長らはジュネーブで記者会見し、OPERA実験の超光速の結果に対し懐疑的立場を示した。ホイヤー所長は「1つの方法による1つの実験結果にすぎない」とし、CERNとOPERAを切り離す立場をとり、特に実験に使われたGPSによる時計あわせが疑われるとした。そのため今後フェルミ研究所で追加実験を行い、数ヶ月後に結果が出る見込みと語った。[21][注釈 6]。
11月19日、グランサッソ研究所の別の実験チーム「ICARUS」が、OPERAの結果を否定する論文を発表した。それによると、実験では光速で移動する粒子と同じエネルギースペクトルを示したという。グラショウ理論によれば、もし超光速ならエネルギーをほとんど失っているはずだという[22][23][24]。
脚注
注釈
^ 「neutrino」という語は、「中性の(もの)」という意味のneutroという語幹に、イタリア語の「小さい~」を意味する接尾辞(指小辞)の「ino イーノ」を組み合わせた造語である。
^ その他にロスアラモス国立研究所によるLSND実験において通常の反応を示さない4世代目のニュートリノ(ステライルニュートリノ)の証拠が得られているが、フェルミ国立研究所のMiniBooNE実験チームは2007年4月11日、現時点でその存在を示す証拠はないという否定的見解を発表した。
^ この際にパウリはこの粒子を「中性子(ニュートロン)」と呼称していたが、ジェームズ・チャドウィックが自身の発見した中性粒子にこの名を命名した為、フェルミによって新たに「ニュートリノ(イタリア語で中性の微粒子の意)」と名付けられた。
^ 人を貫く太陽からのニュートリノは毎秒100兆個である。
^ ニュートリノビームが長かったため、最初の実験ではビームのどこで到着時間を計測しているか不明であった。
^ このGPSについて、民間用GPSは位置精度が落とされているが、最大誤差は数十m程度であるので、GPSではこの実験の説明がつけられないとされた。ただしGPSの時間精度(原子時計を搭載した衛星を利用しているが)と、2つの実験装置への実装の具体的な方法(遅延が生じる場合がある)が知られていないので、疑惑の中心とされていた。通常精密な時刻あわせにGPSを利用しないためであった。
出典
^ ニュートリノ - ATOMICA -
^ J. Csikai (1957年). “Photographie evidence for the existence of the neutrino”. Il Nuovo Cimento 5 (4): 1011. doi:10.1007/BF02903226.
^ J. Csikai, A. Szalay (1959年). “The effect of neutrino recoil in the beta decay of He6displaystyle ^6”. Soviet Physics JETP 8 (5): 749.
^ European Physical Society Historic Site - The Neutrino Experiment
^ J. Schechter, J.W.F. Valle (1980年). “Neutrino Masses in SU(2) x U(1) Theories”. Physical Review D 22 (9): 2227. Bibcode 1980PhRvD..22.2227S. doi:10.1103/PhysRevD.22.2227.
^ B. Kayser (2005年). “Neutrino mass, mixing, and flavor change”. Particle Data Group. 2007年11月25日閲覧。
^ S.M. Bilenky, C. Giunti; Giunti (2001年). “Lepton Numbers in the framework of Neutrino Mixing”. International Journal of Modern Physics A 16 (24): 3931–3949. arXiv:hep-ph/0102320. Bibcode 2001IJMPA..16.3931B. doi:10.1142/S0217751X01004967.
^ OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso:CERN Press Release- ^ abMeasurement of the neutrino velocity with the OPERA detector in the CNGS beam:Preprint on arxiv.org
^ 理:光より速いニュートリノ? 相対性理論覆す発見か 毎日新聞2011年9月23日
^ Observation of events with decay topologies in the OPERA experiment
^ ニュートリノは光より速い?NHK:2011年9月23日 18時57分
^ 光より速いニュートリノ、再実験しても速かった 読売新聞 2011年11月19日00時51分
^ Measurement of the neutrino velocity with the OPERA detector in the CNGS beam arXiv:1109.4897 last revised 17 Nov 2011 (this version, v2)
^ ニュートリノ「光より速い」撤回へ 読売新聞2012年6月2日
^ “ニュートリノ、「超光速」撤回 名古屋大などが正式に発表 再実験で判明”. 産経新聞. 20140329閲覧。
^ ニュートリノ「光より速い」撤回 国際チーム「測定ミス」 ケーブル接続部に隙間 産経新聞2012年6月9日
^ 時計はGPSを利用し、10ナノ秒であわせた。
^ MINOS for Scientists
^ つくば・神岡間長基線ニュートリノ振動実験 (K2K)
^ ニュートリノの光速超え「疑い抱く」実験舞台の責任者 日本経済新聞2011年10月7日
^ 「光速超えるニュートリノ」に異論、伊チームが論文発表 ロイター 11月21日
^ Study rejects "faster than light" particle finding:Reuters:By Robert Evans GENEVA | Sun Nov 20, 2011 6:35pm EST
^ A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS :last revised Thu, 8 Mar 2012 15:42:38 UTC (this version, v3)
関連項目
- ニュートリノ天文学
- 超新星爆発
- 物理学
- 小柴昌俊
- 戸塚洋二
- 梶田隆章
- 暗黒物質
外部リンク
- つくば・神岡間長基線ニュートリノ振動実験 (K2K) 公式サイト
- 大強度陽子加速器を用いた次期ニュートリノ振動実験計画
- フェルミ国立研究所(英語)
- MiniBooNE実験 公式サイト(英語)
|