氯化铵

Multi tool use氯化铵
|
---|
 |
IUPAC名 Ammonium chloride
|
别名
| 电盐,盐精,气药粉,盐硇,电气药粉
|
识别
|
---|
CAS号
| 12125-02-9  |
PubChem
| 25517
|
ChemSpider
| 23807
|
SMILES
|
|
InChI
|
|
InChIKey
| NLXLAEXVIDQMFP-UHFFFAOYAI
|
UN编号
| 3077
|
EINECS
| [1] 235-186-4 [1]
|
ChEBI
| 31206
|
RTECS
| BP4550000
|
KEGG
| D01139
|
性质
|
---|
化学式
| NH4Cl
|
摩尔质量
| 53.49 g·mol⁻¹
|
外观
| 无色或白色晶体
|
密度
| 1.527 g/cm3 |
熔点
| 338 °C(611 K)
|
沸点
| 520 °C (968 °F; 793 K)
|
溶解性(水)
| 29.7 g/100 mL (0 °C) 37.2 g/100 mL (20 °C) 77.3 g/100 mL (100 °C)
|
溶解性(酒精)
| 0.6 g/100 mL (19 °C)
|
危险性
|
---|
警示术语
| R:R22-R36
|
安全术语
| S:S2-S22
|
欧盟编号
| 017-014-00-8
|
NFPA 704
|
|
相关物质
|
---|
其他阴离子
| 溴化铵、碘化铵、氟化铵
|
其他阳离子
| 氯化钾、氯化钠
|
若非注明,所有数据均出自一般条件(25 ℃,100 kPa)下。
|
氯化铵(化学式:NH4Cl)无色立方晶体或白色结晶,其味咸凉有微苦。易溶于水和液氨,并微溶于醇;但不溶于丙酮和乙醚。水溶液呈弱酸性,加热时酸性增强。
由于铵离子的配位性,氯化铵溶液对金属有腐蚀性,特别对铜腐蚀更大。
制備
氯化铵由氨气与氯化氢或氨水与盐酸发生中和反应得到,由氨氣與氯化氫合成的反應過程中會產生白煙。
- NH3 + HCl → NH4Cl
反应
加热时,氯化铵分解为氯化氢及氨气:
- NH4Cl → NH3 + HCl
備註:如果容器是开放体系,此反应只向右进行。
用途
- 主要用于制造电池、蓄电池、铵盐、鞣革,进行电镀、添加於食物(如咸甘草糖)、照相或生产粘合剂、天气瓶等。
参考来源
^ 氯化铵(Ammonium chloride). [2015年5月28日] (中文).
铵根离子化合物 NH4+
|
---|
| 主族元素 | - NH4BF4
- (NH4)3AlF6
- (NH4)2CO3
- NH4HCO3
- (NH4)2SiF6
- NH4NO3
- (NH4)3PO4
- (NH4)2HPO4
- NH4H2PO4
- NH4PF6
- NH3ˑH2O
- (NH4)2S
- NH4HS
- (NH4)2SO3
- (NH4)2S2O3
- (NH4)2SO4
- NH4HSO4
- (NH4)2S2O8
- NH4NH2SO3
- NH4F
- NH4HF2
- NH4Cl
- NH4ClO3
- NH4ClO4
- NH4Br
- NH4I
- NH4IO3
- NH4CN
- NH4SCN
|
---|
| 过渡金属 | - NH4VO3
- (NH4)3VS4
- (NH4)2CrO4
- (NH4)2Cr2O7
- (NH4)2MoO4
- (NH4)6Mo7O24
- (NH4)3PMo12O40
- (NH4)2MoS4
- (NH4)10H2W12O42
- (NH4)2WS4
- (NH4)2WSe4
- NH4MnO4
- NH4ReO4
- (NH4)2U2O7
|
---|
| 复盐 | - NH4Al(SO4)2
- NH4Cr(SO4)2
- (NH4)2Fe(SO4)2
- NH4Fe(SO4)2
- (NH4)2Co(SO4)2
- (NH4)2Ni(SO4)2
- NH4Ce(SO4)2
- (NH4)4Ce(SO4)4
- (NH4)2Ce(NO3)6
|
---|
| 有机酸盐 | - HCOONH4
- NH2COONH4
- CH3COONH4
- HSCH2COONH4
- (NH4)2C2O4
- PhCOONH4
- (NH4)2C4H4O6
- C6H2(NO2)3ONH4
- NH4C8H4N5O6
|
---|
|
氯化物
|
---|
| HCl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| He
| LiCl
| BeCl2
|
|
|
|
|
|
|
|
|
|
| BCl3
| CCl4 C2Cl4 C2Cl6
| NCl3 NH4Cl NH4OCl
| ClO2 Cl2O7
| ClF
| Ne
| NaCl
| MgCl2
|
|
|
|
|
|
|
|
|
|
| AlCl3
| SiCl4
| P2Cl4 PCl3 PCl5
| S2Cl2 SCl2 SCl4
| Cl- Cl2
| Ar
| KCl
| CaCl2
| ScCl3
| TiCl2 TiCl3 TiCl4
| VCl2 VCl3 VCl4
| CrCl3
| MnCl2
| FeCl2 FeCl3
| CoCl2
| NiCl2
| CuCl CuCl2
| ZnCl2
| GaCl3
| GeCl4
| AsCl3 AsCl5
| Se2Cl2 SeCl4
| BrCl
| Kr
| RbCl
| SrCl2
| YCl3
| ZrCl4
| NbCl3 NbCl4 NbCl5
| Mo6Cl12 MoCl3 Mo2Cl10
| TcCl4
| RuCl3
| RhCl3
| PdCl2
| AgCl
| CdCl2
| InCl3
| SnCl2 SnCl4
| SbCl3 SbCl5
| TeCl4
| ICl ICl3
| XeCl2 XeCl4
| CsCl
| BaCl2
| *
| Hf
| TaCl5
| W6Cl12 W6Cl18
| Re
| OsCl4
| IrCl3 IrCl4
| PtCl2 PtCl4
| AuCl AuCl3
| Hg2Cl2 HgCl2
| TlCl TlCl3
| PbCl2
| BiCl3
| Po
| At
| Rn
| Fr
| RaCl2
| **
| Rf
| Db
| Sg
| Bh
| Hs
| Mt
| Ds
| Rg
| Cn
| Nh
| Fl
| Mc
| Lv
| Ts
| Og
|
|
|
| ↓
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| *
| LaCl3
| CeCl3
| PrCl3
| NdCl3
| PmCl3
| SmCl2 SmCl3
| EuCl2 EuCl3
| GdCl3
| TbCl3
| DyCl3
| HoCl3
| ErCl3
| TmCl2 TmCl3
| YbCl3
| LuCl3
|
|
| **
| AcCl3
| ThCl4
| PaCl4 PaCl5
| UCl3 UCl4 UCl6
| NpCl3 NpCl4
| PuCl3
| AmCl3
| CmCl3
| BkCl3
| CfCl3
| EsCl3
| Fm
| Md
| No
| Lr
|
|
|
|
泌尿藥、包含解痙藥類(G04B)
|
---|
| 酸化劑類 | |
---|
| 泌尿解痙藥類 (主要為抗蕈毒鹼類藥物) | - 達非那新
- 依美溴銨
- 弗斯特羅定
- 黃酮哌酯
- 咪達那新
- 美拉肼
- 米拉貝隆
- 羥丁寧
- 丙哌凡林
- 索利那新
- 雙苯丁胺
- 托特羅定
- 曲司氯銨
|
---|
| 其它泌尿藥 | 其它藥品: 膠原蛋白
- 二甲基亞碸
- 氢氧化镁
- 戊聚醣多硫酸酯
- 非那吡啶
- 水楊酸苯酯
- 琥珀酰亞胺
|
---|
|
|
|
规范控制 | - AAT: 300183629
- LCCN: sh2009008354
- NDL: 00575697
|
---|
|
YvHKMV BAY m qI
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...