以偏概全

Multi tool use以偏概全或取樣偏誤(英语:Sampling bias)是指以少數的例證或特殊的情形,強行概括整體。[1]
常見形式
以偏概全有幾種常見的形式:
- 只根據部分案例推論一般性規律(偏差樣本、輕率概化、軼事證據)
- 只根據部分案例的特質推論整個群體的一般性特質(合成謬誤)
- 只根據部分特例否定一般性通則(逆偶例謬誤)
- 只根據部分支持的證據支持一個論點(單方論證)
以全概偏
相對地,以全概偏即是將通則強加至所有個例。
以全概偏有的常見形式如下:
- 將整個群體的一般性特質套用至所有個體(分割謬誤)
- 根據一般性通則否定特例的可能性(偶例謬誤)
- 某甲整體而言優於某乙時,認定某甲不會有任何一點遜於某乙。
注釋
外部連結
(繁体中文) https://web.archive.org/web/20120703070642/http://www.hfu.edu.tw/~cchi/critical%20thinking%20web/0Fallacy/Fallacy-all.htm
批判性思考
|
---|
| - 分析
- 歧义性
- 论证
- 信仰
- 偏见
- 公信力
- 证据
- 解释
- 解释力
- 事实
- 谬论
- 探究
- 意见
- 奥卡姆剃刀
- 前提
- 政治宣传
- 审慎
- 推理
- 关联
- 修辞学
- 严格
- 含糊
| |
謬誤
|
---|
|
形式謬誤
|
---|
| 命題邏輯謬誤 | - 肯定後件
- 否定前件
- 換位不換質
- 換質不換位
- 肯定選言
- 否定聯言
|
---|
| 量化詞邏輯謬誤 | |
---|
| 三段論邏輯謬誤 | - 大詞不當
- 小詞不當
- 中詞不周延
- 肯定推得否定
- 否定推得肯定
- 互斥前提
- 四詞謬誤
|
---|
| 雜類謬誤 | |
---|
| |
非形式謬誤
|
---|
| 不一致的謬誤 | |
---|
| 不相干的謬誤 |
偽冒論題 | |
---|
| 偽冒理據 | - 訴諸權威
- 訴諸群眾
- 訴諸人身
- 訴諸動機
- 訴諸後果
- 訴諸情感
- 訴諸中庸
- 訴諸無知
- 訴諸沉默
- 積非成是
- 起源謬誤
- 關聯謬誤
|
---|
|
---|
| 不充分的謬誤 |
以偏概全 | - 逆偶例謬誤
- 合成謬誤
- 偏差樣本
- 訴諸可能
- 單方論證
- 不完整的比較
- 不一致的比較
- 完美主義
- 權宜主義
|
---|
| 以全概偏 | |
---|
| 因果謬誤 | - 與此故因此
- 後此故因此
- 倒果為因
- 單因謬誤
- 複合結果
- 無足輕重
- 迴歸謬誤
- 滑坡謬誤
|
---|
|
---|
| 不當預設的謬誤 | |
---|
| 雜類謬誤 |
|
---|
| | |
|
| |
認知偏誤
|
---|
| 認知與決策偏誤 | - 巴納姆效應
- 一廂情願
- 不當類比
- 投射作用
- 史學家謬誤
- 锚定效应
- 确认偏误
- 基本归因
- 达克效应
- 晕轮效应
- 后见之明
- 尖角效应
- 多看效应
- 自利性
- 现状偏差
- 雷斯多夫效应
|
---|
| 統計與機率偏誤 | - 基本比率謬誤
- 合取謬誤
- 賭徒謬誤
- 逆賭徒謬誤
- 熱手謬誤
- 檢察官謬誤
- 辯護人謬誤
- 多重比較謬誤
- 德州神槍手謬誤
- 戲局謬誤
|
---|
| 其他偏误 | |
---|
| |
|
|
|
MKbY8hhenHDtV
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...