大概在1850年左右,相關學者從「藏文」(起源於7世紀)和「缅文」(起源於12世紀)的相關資料中,發現到這兩種語言似乎有某種程度的關聯性。在這之後,有一些英國學者以及英國派駐在印度和緬甸的殖民地官員,也開始採用比較有系統的方式,試著對該地區比較不為人知的一些「部落」(tribal)語言進行實地的田野調查和紀錄,而發現到這些語言和藏語以及緬語這兩個具有文字傳統的語言,似乎也有某種程度的親和關係。在這些相關研究中,George Abraham Grierson的《印度語言調查(Linguistic Survey of India)》(1903-1928,其中有三卷和藏緬語系的語言有關),是這個階段對於藏緬語言最重要的研究成果(STEDT[3])。
接下來,雖然有人試著要在藏語和漢語之間找尋其中的親緣關係,但是,由於相關實證資料的不足,學者並無法對原始藏緬語(Proto-Tibeto-Burman)進行擬構的工作,也因此無法產生什麼明確的結論。1930年左右,美國語言學者Robert Shafer在白保羅(Paul K. Benedict)的協助下,以在該地區工作的殖民地官員和傳教士所編寫的一些字典和語言研究為基礎,首次對後來被歸類為藏緬語族的這些語言進行比較有系統的研究工作,也初步將這些語言的系譜關係作了一定程度的釐清。這次研究的成果,是被稱之為《漢藏語言學(Sino-Tibetan Linguistics)》(1939-1941)的三卷未出版手稿(STEDT[3])。
1966年,Shafer第一次正式將他的研究心得加以出版,這就是《漢藏語言介紹(Introduction to Sino-Tibetan)》(見Shafer 1966)這本書。在這本書中,他不但將泰語列入漢藏語系當中,同時也對藏緬語族的各種語言,作了相當詳盡的分類。雖然這個分類系統乍看之下十分地合理,但是,由於某些語言的原始資料並不齊備,他的某些分類其實是很有問題的(STEDT[3])。
同樣以這些資料為基礎,白保羅卻獲得了和Shafer不太相同的結論。在其1972年所出版的《漢藏語概論(Sino-Tibetan: A Conspectus)》中(這本書的初稿完成於1941年左右),白保羅一方面將泰語排除在漢藏語系之外,另一方面,他則將緬甸北部的克欽語(Kachin)視為是其他藏緬語族語言的「輻射中心」,而將克倫語(Karen)排除在這個中心之外。雖然白保羅的這本書還留下不少無法解決的難題,但是,目前多數的語言學者都認為,《漢藏語概論》的出版代表了漢藏語系研究的一個新紀元,也在某種程度上對藏緬語族的分類,提供了比較可信的假設(STEDT[3])。
末昂语 ‧ 嘎苏话(英语:Kathu language) ‧ Manga language (Sino-Tibetan)(英语:Manga language (Sino-Tibetan)) ‧ Mango language (Sino-Tibetan)(英语:Mango language (Sino-Tibetan)) ‧ Maza language(英语:Maza language) ‧ 曼子语(英语:Mondzi language) ‧ Muangphe language(英语:Muangphe language)
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...