非線性系統



在物理科學中,如果描述某個系統的方程其輸入(自變數)與輸出(應變數)不成正比,則稱為非線性系統。由於自然界中大部分的系統本質上都是非線性的,因此許多工程師、物理學家、數學家和其他科學家對於非線性問題的研究都極感興趣。非線性系統和線性系統最大的差別在於,非線性系統可能會導致混沌、不可預測,或是不直觀的結果。


一般來說,非線性系統的行為在數學上是用一組非線性聯立方程來描述的。非線性方程裡含有由未知數構成的非一次多項式;換句話說,一個非線性方程並不能寫成其未知數的線性組合。而非線性微分方程,則是指方程裡含有未知函數及其導函數的乘冪不等於一的項。在判定一個方程是線性或非線性時,只需考慮未知數(或未知函數)的部分,不需要檢查方程中是否有已知的非線性項。例如在微分方程中,若所有的未知函數、未知導函數皆為一次,即使出現由某個已知變數所構成的非線性函數,我們仍稱它是一個線性微分方程。


由於非線性方程非常難解,因此我們常常需要以線性方程來近似一個非線性系統(線性近似)。這種近似對某範圍內的輸入值(自變數)是很準確的,但線性近似之後反而會無法解釋許多有趣的現象,例如孤波、混沌[1]和奇點。這些奇特的現象,也常常讓非線性系統的行為看起來違反直覺、不可預測,或甚至混沌。雖然「混沌的行為」和「隨機的行為」感覺很相似,但兩者絕對不能混為一談;也就是說,一個混沌系統的行為絕對不是隨機的。


舉例來說,許多天氣系統就是混沌的,微小的擾動即可導致整個系統產生各種不同的複雜結果。就目前的科技而言,這種天氣的非線性特性即成了長期天氣預報的絆腳石。


某些書的作者以非線性科學來代指非線性系統的研究,但也有人不以為然:
.mw-parser-output .templatequotemargin-top:0;overflow:hidden.mw-parser-output .templatequote .templatequoteciteline-height:1em;text-align:left;padding-left:2em;margin-top:0.mw-parser-output .templatequote .templatequotecite citefont-size:small



「在科學領域裡使用『非線性科學』這個詞,就如同把動物學裡大部分的研究對象稱作『非大象動物』一樣可笑。」


——斯塔尼斯拉夫.烏拉姆[2]




目录





  • 1 定義


  • 2 非線性代數方程


  • 3 非線性遞迴關係


  • 4 非線性微分方程

    • 4.1 常微分方程


    • 4.2 偏微分方程


    • 4.3 單擺



  • 5 非線性表現(列舉)


  • 6 非線性方程(列舉)


  • 7 分析非線性系統


  • 8 參見


  • 9 參考資料


  • 10 延伸閱讀


  • 11 外部連結




定義


在數學上,一個線性函數(映射)f(x)displaystyle f(x)f(x) 擁有以下兩個性質:


  • 疊加性:f(x+y) =f(x) +f(y)displaystyle textstyle f(x+y) =f(x) +f(y)displaystyle textstyle f(x+y) =f(x) +f(y)

  • 齊次:f(αx) =αf(x)displaystyle textstyle f(alpha x) =alpha f(x)displaystyle textstyle f(alpha x) =alpha f(x)

α 是有理數的情況下,一個可疊加函數必定是齊次函數(在討論線性與否時,齊次函數專指一次齊次函數);若 f(x)displaystyle f(x)f(x) 是連續函數,則只要 α 是任意實數,就可以從疊加性推出齊次。然而在推廣至任意複數 α 時,疊加性便再也無法導出齊次了。也就是說,在複數的世界裡存在一種反線性映射,它滿足疊加性,但卻非齊次。疊加性和齊次這兩個條件常會被合併在一起,稱之為疊加原理:



f(αx+βy)=αf(x)+βf(y)displaystyle f(alpha x+beta y)=alpha f(x)+beta f(y),displaystyle f(alpha x+beta y)=alpha f(x)+beta f(y),

對於一個表示為


f(x)=Cdisplaystyle f(x)=C,displaystyle f(x)=C,

的方程,如果 f(x)displaystyle f(x)f(x) 是一個線性映射,則稱為線性方程,反之則稱為非線性方程。另外,如果 C=0displaystyle C=0displaystyle C=0,則稱此方程齊次(齊次在函數和方程上的定義不同,齊次方程指方程內沒有和 x 無關的項 C,即任何項皆和 x 有關)。


這裡 f(x)=Cdisplaystyle f(x)=Cdisplaystyle f(x)=C 的定義是很一般性的,xdisplaystyle xx 可為任何數字、向量、函數等,而 f(x)displaystyle f(x)f(x) 可以指任意映射,例如有條件限制(給定初始值或邊界值)的微分或積分運算。如果 f(x)displaystyle f(x)f(x) 內含有對 xdisplaystyle xx 的微分運算,此方程即是一個微分方程。



非線性代數方程




代數方程又稱為多項式方程。令某多項式等於零可得一個多項式方程,例如:



x2+x−1=0displaystyle x^2+x-1=0,displaystyle x^2+x-1=0,

利用勘根法可以找出某個代數方程的解;但若是代數方程組則較為複雜,有時候甚至很難確定一個代數方程組是否具有複數解(見希爾伯特零點定理)。即使如此,對於一些具有有限個複數解的多項式方程組而言,我們已經找到解的方法,並且也已充分了解這種系統的行為[3]。代數方程組的研究是代數幾何裡重要的一環,而代數幾何正是現代數學裡的其中一個分枝。



非線性遞迴關係


若將一個序列前項和後項之間的關係定義成某個非線性映射,則稱為非線性遞迴關係,例如單峰映射和侯世達數列英语Hofstadter sequence。由非線性遞迴關係構成的非線性離散模型,在實際應用中包括 NARMAX(Nonlinear AutoRegressive Moving Average with eXogenous inputs,外部輸入非線性自迴歸移動平均)模型、非線性系統辨識和分析程序等。[4]這些方法可以用來分析時域、頻域和時空域(spatio-temporal domains)裡複雜的非線性行為。



非線性微分方程


若描述一個系統的微分方程是非線性的,則稱此系統為非線性系統。含有非線性微分方程的問題,系統彼此間的表現差異極大,而每個問題的解法或是分析方法也都不一樣。非線性微分方程的例子如流體力學的納維-斯托克斯方程,以及生物學的洛特卡-沃爾泰拉方程。


解非線性問題最大的難處在於找出未知的解:一般來說,我們無法用已知的解來拼湊出其他滿足微分方程的未知解;而在線性的系統裡,卻可以利用一組線性獨立的解,透過疊加原理組合出此系統的通解。例如滿足狄利克雷邊界條件的一維熱傳導問題,其解(時間的函數)可以寫成許多不同頻率之正弦函數的線性組合,而這也讓它的解很彈性、具有很大的變化空間。通常我們可以找到非線性微分方程的特解,但由於此時疊加原理並不適用,故無法利用這些特解來建構出其他新的解。



常微分方程


一階常微分方程常常可以利用分離變數法來解,特別是自守方程



dudx=f(u)displaystyle frac dudx=f(u),displaystyle frac dudx=f(u),

例如


dudx=−u2displaystyle frac dudx=-u^2,displaystyle frac dudx=-u^2,

這個方程式的通解為 u=1x+Cdisplaystyle u=frac 1x+Cdisplaystyle u=frac 1x+C,特解為 u = 0(即通解在 C 趨近於無限大時的極限)。此方程是非線性的,因為它可以被改寫為



dudx+u2=0displaystyle frac dudx+u^2=0,displaystyle frac dudx+u^2=0,

而等號左邊並不是 u 的線性映射。若把此式的 u2 換成 u,則會變成線性方程(指數衰減)。


二階和高階非線性常微分方程組的解幾乎無法表示成解析解,反而較常表為隱函數或非初等函數積分的形式。


分析常微分方程常用的方法包括:


  • 檢查是否有任何守恆量(特別是在處理哈密頓系統的時候)。

  • 檢查有沒有類似守恆量的耗散量(見李亞普諾夫函數)。

  • 利用泰勒展開式作線性近似。

  • 利用變數變換法,改寫成較易分析的方程。


  • 分岔理論。


  • 微擾法(也可應用在代數方程上)。


偏微分方程



研究非線性偏微分方程最常見也最基礎的方法就是變數變換,變換以後的方程會較簡單,甚至有可能會變成線性方程。有時候,變數變換後的方程可能會變成一個或兩個以上的常微分方程(如同用分離變數法解偏微分方程),不管這些常微分方程可不可解,都能幫助我們了解這個系統的行為。


另一個流體力學和熱力學裡常用的方法(但數學性較低),是利用尺度分析來簡化一個較一般性的方程,使它僅適用在某個特定的邊界條件上。例如,在描述一個圓管內一維層流的暫態時,我們可以把非線性的納維-斯托克斯方程簡化成一個線性偏微分方程;這時候尺度分析提供了兩個特定的邊界條件:一維和層流。


其他分析非線性偏微分方程的方法還有特徵線法,以及上述分析常微分方程時常用的方法。



單擺





單擺(v 表示速度向量;a 表示加速度向量)


非線性問題的一個典型的例子,就是重力作用之下單擺的運動。單擺的運動可由以下的方程來描述(用拉格朗日力學可以證明[5]):



d2θdt2+sin⁡(θ)=0displaystyle frac d^2theta dt^2+sin(theta )=0,displaystyle frac d^2theta dt^2+sin(theta )=0,

這是一個非線性且無因次的方程,θdisplaystyle theta theta 是單擺和它靜止位置所夾的角度,如動畫所示。此方程的一個解法是將 dθdtdisplaystyle frac dtheta dtdisplaystyle frac dtheta dt 視為積分因子,積分以後得



∫dθC0+2cos⁡(θ)=t+C1displaystyle int frac dtheta sqrt C_0+2cos(theta )=t+C_1,displaystyle int frac dtheta sqrt C_0+2cos(theta )=t+C_1,

上述的解是隱解的形式,同時也包含了橢圓積分。這個解通常沒有什麼用,因為非初等函數積分(即使 C0=0displaystyle C_0=0displaystyle C_0=0 仍然是非初等函數)把解的各種特性隱藏了起來,使我們不易看出單擺系統的行為。


另一個解法是把這個非線性方程作線性近似:利用泰勒展開式將非線性的 sine 函數線性化,並在某些特定的點附近討論解的情形。例如,若在 θ=0displaystyle theta =0theta =0 的點附近作線性近似(又稱小角度近似),θ≈0displaystyle theta approx 0displaystyle theta approx 0 時,sin⁡(θ)≈θdisplaystyle sin(theta )approx theta sin(theta )approx theta ,故原方程可以改寫為



d2θdt2+θ=0displaystyle frac d^2theta dt^2+theta =0,displaystyle frac d^2theta dt^2+theta =0,

近似後的方程變成了簡諧振盪,因此當單擺運動到底部附近時,可以對應到一個簡諧振子。而若在 θ=πdisplaystyle theta =pi theta =pi (即當單擺運動到圓弧的最高點時)附近作線性近似,sin⁡(θ)=sin⁡(π−θ)≈π−θdisplaystyle sin(theta )=sin(pi -theta )approx pi -theta displaystyle sin(theta )=sin(pi -theta )approx pi -theta ,故原方程可以改寫為



d2θdt2+π−θ=0displaystyle frac d^2theta dt^2+pi -theta =0,displaystyle frac d^2theta dt^2+pi -theta =0,

這個方程的解含有雙曲正弦函數,因此和小角度近似不同,這個近似是不穩定的,也就是說 |θ|displaystyle displaystyle 會無限制地增加(但此近似方程的解也可能是有界的)。當我們把解對應回單擺系統後,就可以了解為什麼單擺在圓弧的最高點時不能達到穩定平衡,也就是說,單擺在最高點時是不穩定的狀態。


另一個有趣的線性近似是在 θ=π2displaystyle theta =frac pi 2displaystyle theta =frac pi 2 附近,此時 sin⁡(θ)≈1displaystyle sin(theta )approx 1displaystyle sin(theta )approx 1,故原方程可以改寫為



d2θdt2+1=0displaystyle frac d^2theta dt^2+1=0,displaystyle frac d^2theta dt^2+1=0,

這個近似後的方程可以對應到自由落體。


若把以上線性近似的結果合在一起看,就能大致了解單擺的運動情形。利用其他解非線性微分方程的方法,可以進一步幫助我們找到更精確的相圖,或是估算單擺的週期。



非線性表現(列舉)



  • 古典混沌(和量子混沌相對)—— 指系統裡無法預測的行為。


  • 多穩態 —— 指系統在兩個或多個互斥的狀態之間切換。

  • 非周期振盪 —— 指一個函數在任何周期上都不會固定重複其函數值(也稱作混沌振盪)。


  • 振幅死亡英语Amplitude death —— 指系統內的某振盪因系統的自回饋或受其他系統影響而停止的現象。


  • 孤波 —— 指行進中能自我增強而不消散的孤立波。


非線性方程(列舉)



  • 交流電潮流模型英语AC power flow model

  • 代數黎卡提方程英语Algebraic Riccati equation

  • 球桿系統英语Ball and beam system

  • 最佳策略的貝爾曼方程

  • 波茲曼方程

  • 科爾布魯克方程英语Colebrook equation

  • 廣義相對論

  • 金茲堡-朗道方程


  • 流體力學的納維-斯托克斯方程

  • KdV 方程

  • 非線性光學

  • 非線性薛丁格方程英语Nonlinear Schrödinger equation

  • 未飽和層水流的理查氏方程英语Richards equation

  • Sine-Gordon 方程

  • 朗道-利夫希茲-吉爾伯特方程

  • 石森方程英语Ishimori equation

  • 范德波爾方程

  • 林納德方程英语Liénard equation

  • 弗拉索夫方程英语Vlasov equation




分析非線性系統



  • interalg[永久失效連結] —— OpenOpt 和 FuncDesigner 架構下的求解器,可用來檢查一個非線性代數方程系統是否有任何解,或甚至找出其所有解。


  • 非線性模型及其模擬展示(連結至蒙納許大學的虛擬實驗室)


  • FyDiK —— 可模擬非線性動態系統的軟體。


參見



  • 亞歷山大·李亞普諾夫

  • 動態系统

  • 初始條件

  • 交互作用

  • 線性系統

  • 非線性偏微分方程列表

  • 模態耦合英语Mode coupling

  • 向量光孤子英语Vector soliton

  • 沃爾泰拉級數英语Volterra series

  • 平坦性



參考資料




  1. ^ Nonlinear Dynamics I: Chaos 互联网档案馆的存檔,存档日期2008-02-12. at MIT's OpenCourseWare


  2. ^ Campbell, David K. Nonlinear physics: Fresh breather. Nature. 25 November 2004, 432 (7016): 455–456. ISSN 0028-0836. doi:10.1038/432455a (英语). 


  3. ^ Lazard, D. Thirty years of Polynomial System Solving, and now?. Journal of Symbolic Computation. 2009, 44 (3): 222–231. doi:10.1016/j.jsc.2008.03.004. 


  4. ^ Billings S.A. "Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains". Wiley, 2013


  5. ^ David Tong: Lectures on Classical Dynamics



延伸閱讀


.mw-parser-output .refbeginfont-size:90%;margin-bottom:0.5em.mw-parser-output .refbegin-hanging-indents>ullist-style-type:none;margin-left:0.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>ddmargin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none.mw-parser-output .refbegin-100font-size:100%


  • Diederich Hinrichsen英语Diederich Hinrichsen and Anthony J. Pritchard. Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness. Springer Verlag. 2005. ISBN 9783540441250. 


  • Jordan, D. W.; Smith, P. Nonlinear Ordinary Differential Equations fourth. Oxford University Press. 2007. ISBN 978-0-19-920824-1. 


  • Khalil, Hassan K. Nonlinear Systems. Prentice Hall. 2001. ISBN 0-13-067389-7. 


  • Kreyszig, Erwin. Advanced Engineering Mathematics. Wiley. 1998. ISBN 0-471-15496-2. 


  • Sontag, Eduardo. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Second Edition. Springer. 1998. ISBN 0-387-98489-5. 



外部連結


  • 命令與控制研究計畫(Command and Control Research Program, CCRP)

  • 新英格蘭複雜系統研究所 —— 複雜系統的概念(Concepts: Linear and Nonlinear)


  • 麻省理工開放式課程 —— 非線性動力學一:混沌(Nonlinear Dynamics I: Chaos)


  • 非線性模型 —— 物理系統的非線性模型資料庫(MATLAB)


  • 洛斯阿拉莫斯國家實驗室的非線性研究中心(The Center for Nonlinear Studies)


Popular posts from this blog

Top Tejano songwriter Luis Silva dead of heart attack at 64

ReactJS Fetched API data displays live - need Data displayed static

政党