类Unix系统

Multi tool use类Unix系统(英语:Unix-like)经常被称为 UN*X 或 *nix,指各种Unix的衍生系统,比如FreeBSD、OpenBSD、SUN公司的Solaris,以及各种与传统Unix类似的系统,例如Minix、Linux、QNX等。它们虽然有的是自由软件,有的是私有软件,但都相当程度地继承了原始UNIX的特性,有许多相似处,并且都在一定程度上遵守POSIX规范。
UNIX的商標權由國際開放標準組織所擁有,只有符合單一UNIX規範的UNIX系統才能使用UNIX這個名稱,否則只能稱為類UNIX(UNIX-like)。
分類和例子
自由软件/開源軟件
Agnix(教育用)
386BSD及其子類(BSD系统):
FreeBSD及其子類:
- ClosedBSD
- Apple Darwin
- DragonFly BSD
- GNU/kFreeBSD
- PC-BSD
NetBSD及其子類:
OpenBSD及其子類:
GNU
- GNU Hurd
- GNU/kFreeBSD
- GNU/kNetBSD
Linux(又称GNU/Linux)
- GNU/OpenSolaris
- LUnix
MINIX及其子類:
OpenSolaris - 建基於System V
- Phoenix-RTOS
九号计划:Unix的后继者,采用UNIX设计与哲学,但更一致地套用至整个分布式系统,功能上并不完全相同。
Inferno:Plan 9衍生出的分布式操作系统,原本由贝尔实验室开发,现在被Vita Nuova拥有。
Plan B:Plan 9衍生出的分布式操作系统[1])
Syllable:99% POSIX依從
VSTa:大致POSIX依從
Maemo:诺基亚的开源系统
私有软件
IBM AIX* - 建基於System V Release 3
HP HP-UX*
SGI IRIX*
Apple macOS - 建基於Apple Darwin (自 10.5 開始符合單一UNIX規範)
Apple iOS - 建基於Apple Darwin
- LynxOS RTOS
QNX - 全部重写,没有UNIX相关的代码
SkyOS - 大致POSIX依從
Sun
SunOS - 建基於BSD
Solaris* - 建基於System V Release 4
Compaq Tru64* - 建基於OSF/1
Microsoft Xenix
- VxWorks
- * UNIX® branded systems
参考文献
參見
Unix及类Unix操作系统
|
---|
| - A/UX
- AIX
- Android
- BlackBerry 10
BSD
- 386BSD
- DragonFly BSD
- FreeBSD
- NetBSD
- OpenBSD
- Coherent
- Chrome OS
- ezgo
- GNU
- HP-UX
- iOS
- IRIX
- Linux
- LynxOS
- MINIX
- NeXTSTEP
macOS
- Plan 9
- QNX
- Research Unix
- SCO OpenServer
- Solaris
- SunOS
- System III
- System V
- Tru64 UNIX
- Ultrix
- UnixWare
- Xenix
- 更多...
| | |
|
Gmnqbdf,o 6lkuveF8Q9x1XJYheeHd2PlWux S 4f8Rg wu,BnuGW47lKvLFkokQ,ugXTKQtWXCJjV PG8WF,pg3Ug8qY mB,p
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...