Image Classification Using TensorFlow, Value error









up vote
0
down vote

favorite












I am new to deep learning and tensorflow and i'm trying to create an image classifier using tensorflow that will classify 5 classes of images.
My training dataset is 25000 images and testing dataset is 5000 images.
below is my code:



import os
from random import shuffle

import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from tqdm import tqdm
import keras
from keras.models import save_model
"""from keras.models import Sequential
from keras.layers import Dense"""

TRAIN_DIR = 'train'
TEST_DIR = 'test'
IMG_SIZE = 16
LR = 1e-3
MODEL_NAME = 'cifar 10 -convnet'

def create_label(image_name):
""" Create an one-hot encoded vector from image name """
word_label = image_name.split('.')[0:2]
if word_label == 'cat':
return np.array([1,0,0,0,0])
elif word_label == 'Dog':
return np.array([0,1,0,0,0])
elif word_label == 'Automobile':
return np.array([0,0,1,0,0])
elif word_label == 'Airplane':
return np.array([0,0,0,1,0])
elif word_label == 'Ship':
return np.array([0,0,0,0,1])


def create_train_data():
training_data =
for img in tqdm(os.listdir(TRAIN_DIR)):
path = os.path.join(TRAIN_DIR, img)
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
training_data.append([np.array(img_data), create_label(img)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data


def create_test_data():
testing_data =
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR, img)
img_num = img.split('.')[0:2]
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
testing_data.append([np.array(img_data), img_num])

shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data


# If dataset is not created:
train_data = create_train_data()
test_data = create_test_data()
# If you have already created the dataset:
# train_data = np.load('train_data.npy')
# test_data = np.load('test_data.npy')
train = train_data[:25000]
test = train_data[:5000]
X_train = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_train = [i[1] for i in train]
X_test = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_test = [i[1] for i in test]

# Building The Model

tf.reset_default_graph()
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log', tensorboard_verbose=0)
history = model.fit('input': X_train, 'targets': y_train, n_epoch=25,
validation_set=('input': X_test, 'targets': y_test),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)

#print(history.history.keys())
#plt.figure(1)

# summarize history for accuracy

"""plt.subplot(211)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test1'], loc='upper left')
plt.show()"""

fig = plt.figure(figsize=(25, 12))

for num, data in enumerate(test_data[:25]):

img_num = data[1]
img_data = data[0]

y = fig.add_subplot(5, 5, num + 1)
orig = img_data
data = img_data.reshape(IMG_SIZE, IMG_SIZE, 1)
model_out = model.predict([data])[0]

if np.argmax(model_out) == 1:
str_label = 'Dog'
if np.argmax(model_out) == 2:
str_label = 'Automobile'
if np.argmax(model_out) == 3:
str_label = 'Airplane'
if np.argmax(model_out) == 4:
str_label = 'Ship'
else:
str_label = 'Cat'

y.imshow(orig, cmap='gray')
plt.title(str_label)
y.axes.get_xaxis().set_visible(False)
y.axes.get_yaxis().set_visible(False)
plt.show()


i'm getting following error:
ValueError: Cannot feed value of shape (64,) for Tensor 'targets/Y:0', which has shape '(?, 2)'



Can someone help me with this?
thanks in advance.










share|improve this question





















  • Your network is expecting a 2D tensor, and you're giving it a 1D tensor. Does that make sense?
    – Josh Friedlander
    Nov 10 at 19:06










  • @JoshFriedlander can you tell me how to do that? can you provide me code?
    – Atif Ali
    Nov 10 at 19:57










  • @JoshFriedlander can you please tell which line should be changed to what exactly?
    – Atif Ali
    Nov 10 at 20:00














up vote
0
down vote

favorite












I am new to deep learning and tensorflow and i'm trying to create an image classifier using tensorflow that will classify 5 classes of images.
My training dataset is 25000 images and testing dataset is 5000 images.
below is my code:



import os
from random import shuffle

import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from tqdm import tqdm
import keras
from keras.models import save_model
"""from keras.models import Sequential
from keras.layers import Dense"""

TRAIN_DIR = 'train'
TEST_DIR = 'test'
IMG_SIZE = 16
LR = 1e-3
MODEL_NAME = 'cifar 10 -convnet'

def create_label(image_name):
""" Create an one-hot encoded vector from image name """
word_label = image_name.split('.')[0:2]
if word_label == 'cat':
return np.array([1,0,0,0,0])
elif word_label == 'Dog':
return np.array([0,1,0,0,0])
elif word_label == 'Automobile':
return np.array([0,0,1,0,0])
elif word_label == 'Airplane':
return np.array([0,0,0,1,0])
elif word_label == 'Ship':
return np.array([0,0,0,0,1])


def create_train_data():
training_data =
for img in tqdm(os.listdir(TRAIN_DIR)):
path = os.path.join(TRAIN_DIR, img)
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
training_data.append([np.array(img_data), create_label(img)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data


def create_test_data():
testing_data =
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR, img)
img_num = img.split('.')[0:2]
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
testing_data.append([np.array(img_data), img_num])

shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data


# If dataset is not created:
train_data = create_train_data()
test_data = create_test_data()
# If you have already created the dataset:
# train_data = np.load('train_data.npy')
# test_data = np.load('test_data.npy')
train = train_data[:25000]
test = train_data[:5000]
X_train = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_train = [i[1] for i in train]
X_test = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_test = [i[1] for i in test]

# Building The Model

tf.reset_default_graph()
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log', tensorboard_verbose=0)
history = model.fit('input': X_train, 'targets': y_train, n_epoch=25,
validation_set=('input': X_test, 'targets': y_test),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)

#print(history.history.keys())
#plt.figure(1)

# summarize history for accuracy

"""plt.subplot(211)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test1'], loc='upper left')
plt.show()"""

fig = plt.figure(figsize=(25, 12))

for num, data in enumerate(test_data[:25]):

img_num = data[1]
img_data = data[0]

y = fig.add_subplot(5, 5, num + 1)
orig = img_data
data = img_data.reshape(IMG_SIZE, IMG_SIZE, 1)
model_out = model.predict([data])[0]

if np.argmax(model_out) == 1:
str_label = 'Dog'
if np.argmax(model_out) == 2:
str_label = 'Automobile'
if np.argmax(model_out) == 3:
str_label = 'Airplane'
if np.argmax(model_out) == 4:
str_label = 'Ship'
else:
str_label = 'Cat'

y.imshow(orig, cmap='gray')
plt.title(str_label)
y.axes.get_xaxis().set_visible(False)
y.axes.get_yaxis().set_visible(False)
plt.show()


i'm getting following error:
ValueError: Cannot feed value of shape (64,) for Tensor 'targets/Y:0', which has shape '(?, 2)'



Can someone help me with this?
thanks in advance.










share|improve this question





















  • Your network is expecting a 2D tensor, and you're giving it a 1D tensor. Does that make sense?
    – Josh Friedlander
    Nov 10 at 19:06










  • @JoshFriedlander can you tell me how to do that? can you provide me code?
    – Atif Ali
    Nov 10 at 19:57










  • @JoshFriedlander can you please tell which line should be changed to what exactly?
    – Atif Ali
    Nov 10 at 20:00












up vote
0
down vote

favorite









up vote
0
down vote

favorite











I am new to deep learning and tensorflow and i'm trying to create an image classifier using tensorflow that will classify 5 classes of images.
My training dataset is 25000 images and testing dataset is 5000 images.
below is my code:



import os
from random import shuffle

import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from tqdm import tqdm
import keras
from keras.models import save_model
"""from keras.models import Sequential
from keras.layers import Dense"""

TRAIN_DIR = 'train'
TEST_DIR = 'test'
IMG_SIZE = 16
LR = 1e-3
MODEL_NAME = 'cifar 10 -convnet'

def create_label(image_name):
""" Create an one-hot encoded vector from image name """
word_label = image_name.split('.')[0:2]
if word_label == 'cat':
return np.array([1,0,0,0,0])
elif word_label == 'Dog':
return np.array([0,1,0,0,0])
elif word_label == 'Automobile':
return np.array([0,0,1,0,0])
elif word_label == 'Airplane':
return np.array([0,0,0,1,0])
elif word_label == 'Ship':
return np.array([0,0,0,0,1])


def create_train_data():
training_data =
for img in tqdm(os.listdir(TRAIN_DIR)):
path = os.path.join(TRAIN_DIR, img)
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
training_data.append([np.array(img_data), create_label(img)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data


def create_test_data():
testing_data =
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR, img)
img_num = img.split('.')[0:2]
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
testing_data.append([np.array(img_data), img_num])

shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data


# If dataset is not created:
train_data = create_train_data()
test_data = create_test_data()
# If you have already created the dataset:
# train_data = np.load('train_data.npy')
# test_data = np.load('test_data.npy')
train = train_data[:25000]
test = train_data[:5000]
X_train = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_train = [i[1] for i in train]
X_test = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_test = [i[1] for i in test]

# Building The Model

tf.reset_default_graph()
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log', tensorboard_verbose=0)
history = model.fit('input': X_train, 'targets': y_train, n_epoch=25,
validation_set=('input': X_test, 'targets': y_test),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)

#print(history.history.keys())
#plt.figure(1)

# summarize history for accuracy

"""plt.subplot(211)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test1'], loc='upper left')
plt.show()"""

fig = plt.figure(figsize=(25, 12))

for num, data in enumerate(test_data[:25]):

img_num = data[1]
img_data = data[0]

y = fig.add_subplot(5, 5, num + 1)
orig = img_data
data = img_data.reshape(IMG_SIZE, IMG_SIZE, 1)
model_out = model.predict([data])[0]

if np.argmax(model_out) == 1:
str_label = 'Dog'
if np.argmax(model_out) == 2:
str_label = 'Automobile'
if np.argmax(model_out) == 3:
str_label = 'Airplane'
if np.argmax(model_out) == 4:
str_label = 'Ship'
else:
str_label = 'Cat'

y.imshow(orig, cmap='gray')
plt.title(str_label)
y.axes.get_xaxis().set_visible(False)
y.axes.get_yaxis().set_visible(False)
plt.show()


i'm getting following error:
ValueError: Cannot feed value of shape (64,) for Tensor 'targets/Y:0', which has shape '(?, 2)'



Can someone help me with this?
thanks in advance.










share|improve this question













I am new to deep learning and tensorflow and i'm trying to create an image classifier using tensorflow that will classify 5 classes of images.
My training dataset is 25000 images and testing dataset is 5000 images.
below is my code:



import os
from random import shuffle

import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from tqdm import tqdm
import keras
from keras.models import save_model
"""from keras.models import Sequential
from keras.layers import Dense"""

TRAIN_DIR = 'train'
TEST_DIR = 'test'
IMG_SIZE = 16
LR = 1e-3
MODEL_NAME = 'cifar 10 -convnet'

def create_label(image_name):
""" Create an one-hot encoded vector from image name """
word_label = image_name.split('.')[0:2]
if word_label == 'cat':
return np.array([1,0,0,0,0])
elif word_label == 'Dog':
return np.array([0,1,0,0,0])
elif word_label == 'Automobile':
return np.array([0,0,1,0,0])
elif word_label == 'Airplane':
return np.array([0,0,0,1,0])
elif word_label == 'Ship':
return np.array([0,0,0,0,1])


def create_train_data():
training_data =
for img in tqdm(os.listdir(TRAIN_DIR)):
path = os.path.join(TRAIN_DIR, img)
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
training_data.append([np.array(img_data), create_label(img)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data


def create_test_data():
testing_data =
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR, img)
img_num = img.split('.')[0:2]
img_data = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img_data = cv2.resize(img_data, (IMG_SIZE, IMG_SIZE))
testing_data.append([np.array(img_data), img_num])

shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data


# If dataset is not created:
train_data = create_train_data()
test_data = create_test_data()
# If you have already created the dataset:
# train_data = np.load('train_data.npy')
# test_data = np.load('test_data.npy')
train = train_data[:25000]
test = train_data[:5000]
X_train = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_train = [i[1] for i in train]
X_test = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_test = [i[1] for i in test]

# Building The Model

tf.reset_default_graph()
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log', tensorboard_verbose=0)
history = model.fit('input': X_train, 'targets': y_train, n_epoch=25,
validation_set=('input': X_test, 'targets': y_test),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)

#print(history.history.keys())
#plt.figure(1)

# summarize history for accuracy

"""plt.subplot(211)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test1'], loc='upper left')
plt.show()"""

fig = plt.figure(figsize=(25, 12))

for num, data in enumerate(test_data[:25]):

img_num = data[1]
img_data = data[0]

y = fig.add_subplot(5, 5, num + 1)
orig = img_data
data = img_data.reshape(IMG_SIZE, IMG_SIZE, 1)
model_out = model.predict([data])[0]

if np.argmax(model_out) == 1:
str_label = 'Dog'
if np.argmax(model_out) == 2:
str_label = 'Automobile'
if np.argmax(model_out) == 3:
str_label = 'Airplane'
if np.argmax(model_out) == 4:
str_label = 'Ship'
else:
str_label = 'Cat'

y.imshow(orig, cmap='gray')
plt.title(str_label)
y.axes.get_xaxis().set_visible(False)
y.axes.get_yaxis().set_visible(False)
plt.show()


i'm getting following error:
ValueError: Cannot feed value of shape (64,) for Tensor 'targets/Y:0', which has shape '(?, 2)'



Can someone help me with this?
thanks in advance.







python tensorflow conv-neural-network tflearn






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 10 at 18:49









Atif Ali

184




184











  • Your network is expecting a 2D tensor, and you're giving it a 1D tensor. Does that make sense?
    – Josh Friedlander
    Nov 10 at 19:06










  • @JoshFriedlander can you tell me how to do that? can you provide me code?
    – Atif Ali
    Nov 10 at 19:57










  • @JoshFriedlander can you please tell which line should be changed to what exactly?
    – Atif Ali
    Nov 10 at 20:00
















  • Your network is expecting a 2D tensor, and you're giving it a 1D tensor. Does that make sense?
    – Josh Friedlander
    Nov 10 at 19:06










  • @JoshFriedlander can you tell me how to do that? can you provide me code?
    – Atif Ali
    Nov 10 at 19:57










  • @JoshFriedlander can you please tell which line should be changed to what exactly?
    – Atif Ali
    Nov 10 at 20:00















Your network is expecting a 2D tensor, and you're giving it a 1D tensor. Does that make sense?
– Josh Friedlander
Nov 10 at 19:06




Your network is expecting a 2D tensor, and you're giving it a 1D tensor. Does that make sense?
– Josh Friedlander
Nov 10 at 19:06












@JoshFriedlander can you tell me how to do that? can you provide me code?
– Atif Ali
Nov 10 at 19:57




@JoshFriedlander can you tell me how to do that? can you provide me code?
– Atif Ali
Nov 10 at 19:57












@JoshFriedlander can you please tell which line should be changed to what exactly?
– Atif Ali
Nov 10 at 20:00




@JoshFriedlander can you please tell which line should be changed to what exactly?
– Atif Ali
Nov 10 at 20:00












1 Answer
1






active

oldest

votes

















up vote
0
down vote













The problem is with the shape of your labels, so check the shape for y_train and y_test . Both of them should have to have a shape similar to the out put of your model, which is shown at the error ...which has shape '(?, 2)' and defined at the line where you create the last fully connected layer convnet = fully_connected(convnet, 2, activation='softmax')
.






share|improve this answer




















  • so what should i do? can you help? i cant understand it clearly...
    – Atif Ali
    Nov 15 at 13:56










Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53242299%2fimage-classification-using-tensorflow-value-error%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













The problem is with the shape of your labels, so check the shape for y_train and y_test . Both of them should have to have a shape similar to the out put of your model, which is shown at the error ...which has shape '(?, 2)' and defined at the line where you create the last fully connected layer convnet = fully_connected(convnet, 2, activation='softmax')
.






share|improve this answer




















  • so what should i do? can you help? i cant understand it clearly...
    – Atif Ali
    Nov 15 at 13:56














up vote
0
down vote













The problem is with the shape of your labels, so check the shape for y_train and y_test . Both of them should have to have a shape similar to the out put of your model, which is shown at the error ...which has shape '(?, 2)' and defined at the line where you create the last fully connected layer convnet = fully_connected(convnet, 2, activation='softmax')
.






share|improve this answer




















  • so what should i do? can you help? i cant understand it clearly...
    – Atif Ali
    Nov 15 at 13:56












up vote
0
down vote










up vote
0
down vote









The problem is with the shape of your labels, so check the shape for y_train and y_test . Both of them should have to have a shape similar to the out put of your model, which is shown at the error ...which has shape '(?, 2)' and defined at the line where you create the last fully connected layer convnet = fully_connected(convnet, 2, activation='softmax')
.






share|improve this answer












The problem is with the shape of your labels, so check the shape for y_train and y_test . Both of them should have to have a shape similar to the out put of your model, which is shown at the error ...which has shape '(?, 2)' and defined at the line where you create the last fully connected layer convnet = fully_connected(convnet, 2, activation='softmax')
.







share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 13 at 11:20









D.negn

262




262











  • so what should i do? can you help? i cant understand it clearly...
    – Atif Ali
    Nov 15 at 13:56
















  • so what should i do? can you help? i cant understand it clearly...
    – Atif Ali
    Nov 15 at 13:56















so what should i do? can you help? i cant understand it clearly...
– Atif Ali
Nov 15 at 13:56




so what should i do? can you help? i cant understand it clearly...
– Atif Ali
Nov 15 at 13:56

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53242299%2fimage-classification-using-tensorflow-value-error%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Top Tejano songwriter Luis Silva dead of heart attack at 64

政党

天津地下鉄3号線