娃娃

Multi tool use
本文介紹的是可用作玩具的布偶。關於別名「娃娃」的人物,請見「
娃娃 (消歧义)」。
 | 查询維基詞典中的doll。 |

Das Ankleiden der Puppe (英語: Dressing the Doll),1844年
娃娃、玩偶一詞泛指模仿人或動物造型的賞玩物品,其中形若人類的稱為人偶。人偶、玩偶的外型面貌,從抽象到擬真,涵蓋不同種族、年齡、性別的外型,因各國、各民族的需求與文化背景而發展出地域特性及文化特色。製作材料包括玻璃、金屬、土、木、布、陶瓷、樹脂等。
在漢語中,娃娃也有小孩的意思,故亦以此指稱按比例縮小的人偶。
用途
祭典儀式
在古老的社會裡,人偶往往是真人在祭典儀式中的替身。後來這種人偶做得益發精美,而進一步發展成裝飾品及玩具。
賞玩遊樂
泛稱用來作給兒童的玩具,用以安慰小孩、供其玩耍。有些娃娃的設計會反映社會的流行與思潮,並期望培養小孩對社會角色的認同感。此外也有大人進行收藏。
研究教學
有些擬真娃娃會全面或部份地講求跟人類一樣的精細,用以教學、研究或特定用途。
種類
- 洋娃娃(Fashion doll,直釋:時尚娃娃),與可動人形最大的分別是只是身軀或頭部是塑膠,衣物和太多數頭髮就用布料和人造纖維製作。最著名品牌有:
- 芭比娃娃
- 貝姿娃娃(Bratz)
- 精靈高中(Monster High)
- 迪士尼公主
- 莉卡娃娃(Licca)
- 珍妮娃娃
- 芙拉娃娃
- MIMI娃娃(The MIMI doll)
- 佩莉普娃娃(Pullip)
- 仙蒂娃娃(Sindy)
- 魔法俏佳人
- 可兒娃娃(Kurhn)
- 布萊絲
- 填充娃娃(毛絨玩具、布娃娃)
- 李岷洋•羅斯福•泰迪(dog doll)
- 娃娃屋人偶(Toy House Doll)
- 波莉口袋(Polly Pocket)
- 森林家族(Forest Homestea)
隆德比(Lundby)
- 摩比
- 萬能麥斯
- 女生派對驚喜(Miss Party Surprise)
- 溫蒂娃娃(Wendy)
- 皮威娃娃(Pee Wee)
- 紙娃娃(Paper doll)
- 非洲娃娃(African doll)
晴天娃娃(日語:てるてる坊主,意指晴天和尚)
巫毒娃娃(Voodoo doll)
- 霍皮娃娃(Hopi Kachina dolls)
- Q比娃娃(Kewpie)
- 美國女孩(American Girls)
- 樂樂天使(Lalaloopsy)
- Ddung娃娃(Ddung)
- 胡桃鉗人偶(Nutcracker)
- 小錫兵(Tin soldiers)
- 不倒翁
- 日本娃娃
- 俄羅斯套娃
- 大頭娃娃、搖頭娃娃(Bobblehead doll)
- 名人娃娃(Celebrity doll)
- 企業娃娃「公仔」(Enterprise doll)
- 大同寶寶
- 佐藤象(Sato Elephant)
- 王子麵寶寶(Prince Instant Noodles)
- 新力寶寶(Sony)
- 可動人像(Action Figure),這名詞是為1964年孩之寶推出的特種部隊G.I. Joe所創的新詞,目的是令男孩玩家顯得少些娘娘腔。現在亞洲的可動人形通常都是以ACG美少女為主,而歐美的主題就以電影、超級英雄等作題材。
- 義勇羣英
- 變形金剛
- 小馬寶莉
- 超人系列
- 假面騎士系列
球體關節人形
- SD娃娃
- figma
- S.H.Figuarts
- 黏土人
- 包膠素體
手辦(人形模型或、手辦模型)
人形(figure,起初指的是人形的雕像和塑像,但至今意义逐渐转变至指代所有特定人物的人物模型)
- 手辦
参考文献
规范控制 | - GND: 4047870-1
- NDL: 00568514
|
---|
|
l48s4D2YiwIT4Z6GrWwvpqwPGXOgdbQ HE,8lDF,eU jjTY w,LL2Xnot uUrtdTRy,qpIH
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...