橙色

Multi tool use橙色
|
---|
網頁顏色 | #FF8700
|
---|
RGBN | (r, g, b) | (255, 135, 0)
|
---|
CMYKN | (c, m, y, k) | (0, 120, 255, 0)
|
---|
HSV | (h, s, v) | (32°, 100%, 100%)
|
---|
N:代表值域介於0~255之間
|
---|
|
橙色,又称赤黄色、橘黄、橘黄色、為二次顏料色,是红色与黄色的混合,得名于的颜色。在光譜上,橘色介於紅色和黃色之間,波長則在585奈米到620奈米之間[1]。
橘
橘色在空气中的穿透力仅次于红色,而色感较红色更暖,最鲜明的橙色应该是色彩中感受最暖的色,能给人有庄严、尊贵、神秘等感觉,所以基本上属于心理色性。历史上许多权贵和宗教界都用以装点自己,现代社会上往往作为标志色和宣传色。不过也是容易造成视觉疲劳的色。對比色為藍色。
橘色明视度高,在工业安全用色中,橙色即是警戒色,如火车头、登山服装、背包、救生衣等。橙色一般可作为喜庆的颜色,同时也可作富贵色,如皇宫里的许多装饰。红、橘、黄三色,均称暖色,属于注目、芳香和引起食欲的色。
橙色的用途和象徵意義
- 橙色是荷兰的国色,早期的荷兰国旗为橙、白、蓝三色,橙色代表了领导1568年尼德兰独立革命的奥伦治亲王(在英语裏,“奥伦治”是orange——橙色的译音)。在17世纪时,为了在战斗及航海时易于辨认及贵族对奥伦治家族的反抗情绪,方将国旗原來的橙色改为现在的红色。但橙色在荷兰及海外荷兰裔人的影响却持续至今:荷兰国家足球队的队服为橙色;南非1994年以前国旗的主色为橙白蓝三色,代表了荷兰人的后裔布尔人早期在南非建立的殖民地奥兰治自由邦及南非共和國。
- 在烏克蘭,橘色是橘色革命的代表顏色。
- 在台灣,橘色是親民黨的代表顏色。
- 在泰国,橙色是星期四的代表颜色。
- 古羅馬時期,新娘會穿著橙色衣服象徵忠誠。
- 橙色在电阻值中代表3。橘色外皮的通信用光纖為多模光纖以與黃色外皮的單模光纖區分。
- 橙色在標記色彩標準中被用作指示危險事項、航海事項和航空事項。
- 除了經典的黑白條紋樣式外,一些監獄也會使用橙色的囚服。
參考文獻
^ 藝術與建築索引典—橙色[永久失效連結]·於2009年12月18日查閱
参见
电磁波谱
|
---|
| - 伽马射线
- X射线
- 紫外线
- 可见光
- 红外线
- 太赫兹辐射
- 微波
- 无线电波
← 波长越短 波长越长 → ← 频率越高 频率越低 →
| | 可见光 | |
---|
| 微波 | - W波段
- V波段
- Q波段
- Ka波段
- K波段
- Ku波段
- X波段
- S波段
- C波段
- L波段
|
---|
| 无线电波 | 極高頻(EHF)
超高頻(SHF)
特高頻(UHF)
甚高頻(VHF)
高頻(HF)
中頻(MF)
低頻(LF)
甚低頻(VLF)
特低頻(ULF)
超低頻(SLF)
極低頻(ELF)
|
---|
| 波长 | |
---|
|
| 橙色系
|
|
---|
橘 Tangerine
| 柿子橙 Persimmon
| 橙 Orange
| 陽橙 Sun orange
| 熱帶橙 Tropical orange
| 蜜橙 Honey orange
| 杏黃 Apricot
|
|
|
|
|
|
|
|
沙棕 Sand beige
| 米 Beige
| 灰土 Pale ocre
| 駝 Camel
| 椰褐 Coconut brown
| 褐 Brown
| 咖啡 Coffee
|
|
|
|
|
|
|
|
hxswHZ4t4,4K OMRo7t S67XusE,1l70cwI5hMm7x0JYV91AXqX,KQYBnRHMbBK5lsc Zts b WpmtRFZBFE
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...