政治人物

Multi tool use
提示:本条目的主题不是
政治家。
政治人物(politician),是指以政治為職業,或積極投入政治活動或公共事務的人,無論其動機是私人利益、黨派利益或國家利益。在現代民主政體中,職業政治人物常通過組織或加入政黨、參與選舉,以爭取在政府中擔任職務[1];這些人在英文中稱為「politician」,指的是一種社會角色。廣義的「政治人物」還包括其他各種政體的政府首腦、政黨或軍事領袖,或其他政權中的主要人物。一般來說,曾從事主要公職的人都會被視為政治人物。
政治家或政客
美國作家克拉克(James Freeman Clarke)認為:「政客是為了下一次的選舉,政治家卻是為了下一代。」[2]換句話說,「政治家」的理想典型,是為了後代子孫的尊嚴、自主與幸福著想,而致力於公共事務;而「政客」的典型則是想盡辦法、用盡手段,只為了保有一己的權力、地位或利益。[3]從倫理學的觀點,所谓「政治家」,就是以政治为业而遵守基本职业道德的人;而「政客」則是以政治为主副业,卻不嚴守职业道德的人。[4]
中文裡有褒意的「政治家」及含有貶意的「政客」二詞,分別用以指涉受到尊敬或遭人鄙視的政治人物;英文中的「statesman」一詞意義近似為「政治家」,帶有尊敬的含義;而「Politician」一般譯為「政治人物」或「政客」,前者是中性詞彙,只表示其社會角色身份,不帶有褒貶含義;而後者則帶有一種輕蔑、貶低之含義。能直接對應「政客」的單詞沒有。[5]要注意的是,日文中也有漢字「政治家」,但屬於偏向中性的「政治人物」或英文的「politician」,無褒貶之意,通常指當過國會議員的「政治人物」,與中文不同。若要表示中文「政客」這樣的意思時,日文中通常是「悪徳政治家」或「悪政治家」等。若真要指相當於中文的「政治家」時,日文會說是「偉大的政治家」。
注腳
^ 安東尼·唐斯(Anthony Downs)著,《民主的經濟理論》(An Economic Theory of Democracy),1957年(ISBN 9780060417505)。
^ Clarke, James Freeman, Quotations Book.
^ 羅榮光撰,『要做政客還是政治家?』(2010年)
^ 百志撰,『中國的政治家與政客』(2003年)。 互联网档案馆的存檔,存档日期2011-01-02.
^ 陳錫蕃撰,『政客與政治家』(2004年)。 互联网档案馆的存檔,存档日期2011-05-26.
相關條目
 | 维基共享资源中相关的多媒体资源:政治人物
|
规范控制 | - AAT: 300025474
- BNE: XX525406
- GND: 4046517-2
- LCCN: sh85104461
- NARA: 10641998
- NDL: 00570489
- NKC: ph115781
|
---|
|
N5w,H iNjJlKC3KKS7hgJqGPqaEE615Pd89PqCC nd3wCNW9OlKak9m5yb,G4hW,7O42sMgtY LXcGAN,kztA
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...