高尺天空巨蛋

Multi tool usebody.skin-minerva .mw-parser-output table.infobox captiontext-align:center
高尺天空巨蛋
고척스카이돔
 高尺天空巨蛋內部場景
|
基本資料 |
---|
位置 |
韩国首爾九老區高尺洞
|
---|
座標 | 37°29′53.6″N 126°52′02.1″E / 37.498222°N 126.867250°E / 37.498222; 126.867250坐标:37°29′53.6″N 126°52′02.1″E / 37.498222°N 126.867250°E / 37.498222; 126.867250
|
---|
業主 | 首爾市政府 |
---|
營運單位 | 首爾城市設施管理組織 |
---|
場館設施 | 人工草坪
|
---|
容納人數 | 17,000 (棒球)[1] |
---|
草坪面積 |
左外野 – 99米(325英尺) 右外野 – 99米(325英尺) 中外野 – 122米(400英尺)
全壘打牆 – 3.8米(12英尺) |
---|
建築 |
---|
動工 | 2009年2月 |
---|
竣工 | 2009年–2015年 |
---|
啟用 | 2015年9月15日 |
---|
建築費 | 2,417億韓圓
|
---|
使用者 |
---|
耐克森英雄 (2016年–至今) |
高尺天空巨蛋(韓語:고척스카이돔[2],英语:Gocheok Sky Dome)是一座位於韓國首爾九老區高尺洞的運動設施,主要用於舉行棒球賽事。本場地舉辦棒球比賽時約有17,000個座席,當舉行演唱會時最多可容納22,000人左右[3]。
概要
當初規劃本場地取代2007年拆除的東大門棒球場,目前則已成為韓國職棒耐克森英雄的主場。此處也主辦2017年世界棒球經典賽-A組的賽事。
相關條目
參考資料
^ [돔구장시대] 4개월 만에 찾은 고척돔, 얼마나 바뀌었나?. sports.news.naver.com. 2016-03-16 [2016-07-15] (韩语).
^ 국내 최초 돔구장 '고척스카이돔' 별칭 생겼다 머니투데이, 2015-09-01.
^ S. Korea's first baseball dome opens, tenant still needed. yonhapnews.co.kr. 2015-09-15 [2016-03-22].
外部連結
官方网站 (韓文)
- Pictures of the Gocheok Sky Dome at World of Stadiums
韓國職業棒球場
|
---|
| 仁川 · 光州 · 大田 · 大邱 · 高尺 · 文鶴 · 木洞 · 水原 · 社稷 · 蠶室 · 馬山 · 大邱 · 清州 · 群山 · 光州 · 東大門(已拆除)
|
|
3l4NZ,avheg7K2a8,nN6,XoCtr F,znFNKZ1UJBPE7 sFWFK,QY,h5Fk,QEOeq
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...