红菇目

Multi tool use
红菇目
|
---|

毒红菇(Russula emetica)
|
科學分類
|
---|
界:
| 真菌界 Fungi
| 門:
| 担子菌门 Basidiomycota
| 綱:
| 伞菌纲 Agaricomycetes
| 目:
| 红菇目 Russulales Kreisel ex P.M. Kirk, P.F. Cannon & J.C. David
|
|
科
|
---|
参见内文
|
異名[1] |
---|
1981 Aleurodiscales Jülich
1981 Bondarzewiales Jülich
1981 Hericiales Jülich
1981 Lachnocladiales Jülich
1981 Stereales Jülich
1998 Peniophorales Boidin, Mugnier & Canales
|
红菇目(学名:Russulales)是伞菌纲下的一目,包括红菇属、乳菇属在内的伞菌类以及它们的多孔菌、革菌近亲。据2008年时的统计,该目共含12科、80属、1767个物种。[2]
红菇类伞菌是一个独立进化的伞菌分支,与伞菌目并没有直接关联。
该目还包括了一些红菇类地下菌、多孔菌(如刺孢多孔菌属)、齿菌、珊瑚菌(如密瑚菌属 Artomyces)。[3]这一目中的担孢子通常都有淀粉质表面纹饰,呈疣状或网状,不过有小部分例外,如多年异担子菌。冠瑚菌属(Clavicorona)原先被划分为红菇目,但其模式种C. taxophila现属伞菌目,剩余种则保留在红菇目中,划分为密瑚菌属。[4]
分类
地花菌科(Albatrellaceae)
淀粉韧革菌科(Amylostereaceae)
耳匙菌科(Auriscalpiaceae)
刺孢多孔菌科(Bondarzewiaceae)
木齿菌科(Echinodontiaceae)
猴头菌科(Hericiaceae)
- Hybogasteraceae
茸瑚菌科(Lachnocladiaceae)
隔孢伏革菌科(Peniophoraceae)
红菇科(Russulaceae)
- Gloeocystidiellaceae
韧革菌科(Stereaceae)
参考资料
^ Russulales Kreisel ex P.M. Kirk, P.F. Cannon & J.C. David 2001. MycoBank. International Mycological Association. [2010-11-05].
^ Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi. 10th ed. Wallingford, UK: CABI. 2008: 609. ISBN 0-85199-826-7.
^ Miller, S.L.; 等. Perspectives in the new Russulales. Mycologia. 2006, 98 (6): 960–970. PMID 17486972. doi:10.3852/mycologia.98.6.960.
^ Lickey, E.B.; 等. Phylogenetic and taxonomic studies in Artomyces and Clavicorona (Homobasidiomycetes: Auriscalpiaceae). Sydowia. 2003, 55: 181–254.
外部链接
- Russulales News
- The Russulales Website
Ge,d 1b pQcyHnwJC,WsPcAZCg4JvQE5cNKI1E3Q3jvqHwYkd8LDHwg Z53ZUkRqxkvE3icKU C
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...