光度函數 (天文學)

Multi tool use
關於光度學的光度函數,請見“
光度函數”。
光度函數在天文學上為恆星或星系的光度分佈[1],是用來研究數量龐大的族群或類別的性質,像是星團中的恆星或是星系團中的星系。
謝克光度函數
謝克光度函數給出了以光度為變數的星系空間密度函數,其型式是:
- n(x) dx=ϕ∗xae−xdx,displaystyle n(x) mathrm d x=phi ^*x^amathrm e ^-xmathrm d x,

此處x=L/L∗displaystyle x=L/L^*
,L∗displaystyle L^*
是星系的特徵光度,決定函數中冪律的適用範圍。ϕ∗displaystyle ,!phi ^*
是歸一化常數,單位是數量密度。星系的光度函數在不同的族群和環境中可能會有不同的參數,它不是一個通用的函數。一個從場星系的測量中的估計是 a=−1.25, ϕ∗=1.2×10−3h3Mpc−3displaystyle a=-1.25, phi ^*=1.2times 10^-3h^3mathrm Mpc ^-3
。[2]
為了方便,謝克光度函數常被改寫成以星等為變數,並有以下形式;
- n(M) dM=0.4 ln10 ϕ∗[100.4(M∗−M)]α+1exp[−100.4(M∗−M)] dM.displaystyle n(M) mathrm d M=0.4 ln 10 phi ^*[10^0.4(M^*-M)]^alpha +1exp[-10^0.4(M^*-M)] mathrm d M.
![displaystyle n(M) mathrm d M=0.4 ln 10 phi ^*[10^0.4(M^*-M)]^alpha +1exp[-10^0.4(M^*-M)] mathrm d M.](https://wikimedia.org/api/rest_v1/media/math/render/svg/154794b18f5316e38d53502ca68a0b965b989a4c)
注意到因為星等是對數形式,冪律有著對數斜率α+1displaystyle alpha +1
。這就是為什麼α=−1displaystyle alpha =-1
的謝克光度函數是平的。
白矮星光度函數
白矮星光度函數 (white dwarf luminosity function,WDLF) 給定白矮星的數量和光度。當在測量這類恆星的形成和冷卻的速率時,它提供有價值的資訊,像是白矮星冷卻的物理和年齡,以及星系的歷史[3][4]。
參考資料
^ Stahler, S.; Palla, F. The Formation of Stars. Wiley VCH. 2004. ISBN 9783527618675. doi:10.1002/9783527618675.
^
Longair, Malcolm. Galaxy Formation. Springer-Verlag. 1998. ISBN 3-540-63785-0.
^ The Texas Deep Sky Survey: Spectroscopy of Cool Degenerate Stars, C. F. Claver, D. E. Winget, R. E. Nather, and P. J. MacQueen, Bulletin of the American Astronomical Society 30 (December 1998), p. 1300
^ The Potential of White Dwarf Cosmochronology, G. Fontaine, P. Brassard, and P. Bergeron, Publications of the Astronomical Society of the Pacific 113, #782 (April 2001), pp. 409–435.
白矮星
|
---|
| 形成 | - 錢德拉塞卡極限
- PG 1159星
- 恆星演化
- 赫羅圖
- 米拉變星
|
---|
| 宿命 | - 黑矮星
Ia超新星
中子星
恆星黑洞
致密星
- 臨終氦星
- B型次矮星
- 氦行星
|
---|
| 双星系统 | 新星
- 矮新星
- 共生變星
激變變星
X射線聯星
聯星脈衝星
- 氦閃
- 碳引爆
|
---|
| 屬性 | |
---|
| 相關的 | 行星狀星雲
大质量重子天体强关联星团(RAMBOs)
- 白矮星光度函數
- 白矮星、中子星和超新星年表
|
---|
| 著名的 | - 范馬南星
- 天狼星B
- 南河三B
- 波江座40 B
- BPM 37093
- HL金牛座76
- 蛇夫座RS
|
---|
| |
|
M2JfwrU,VsMbdlvSRwkJhU1J7W7YYH rvfHVPXWeaJtrIoNkep0PB8gVn,i8FLZL3
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...