纳米

Multi tool use
關於等於國際單位位制1,852公尺的長度單位,請見「
海浬」。
纳米為微米的千分之一倍(符號 nm,英式英文:nanometre、美式英文:nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。
有時候也會見到埃米(符號 Å)這個單位,為10-10m。
1納米(nm)= 10 埃(Å)= 10-9m
現時很多材料的微觀尺度都是以纳米为单位,如半導體製程標準在2000年代以後大多是以奈米表示。
參見
外部链接
参考文献:
- Preparation, Characterization, and Antitumor Efficacy of Evodiamine Loaded PLGA Nanoparticles. Drug Delivery. 2014:1-9. (IF 2.202)
- Nucleolin Targeting AS1411 Aptamer Modified pH-Sensitive Micelles for Enhanced Delivery and Antitumor Efficacy of Paclitaxel. Nano Research. 2015; 8(1): 201-218. (IF 6.963)
- pH-triggered charge-reversal and redox-responsive nanosystems for efficient docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale, 2015, 7, 15763-15779. (IF: 7.394)
- Glycyrrhetinic Acid-decorated and Reduction-sensitive Micelles to Enhance Bioavailability and Anti-hepatocellular Carcinoma Efficacy of Tanshinone IIA. Biomaterials Science. (In Press, IF: 3.831)
長度單位
|
---|
| 公制 | 米(m) · 尧米(Ym) · 泽米(Zm) · 艾米(Em) · 拍米(Pm) · 太米(Tm) · 吉米(Gm) · 兆米(Mm) · 千米(km) · 百米(hm) · 十米(dam) · 分米(dm) · 厘米(cm) · 毫米(mm) · 絲米(dmm) · 忽米(cmm) · 微米(μm) · 纳米(nm) · 皮米(微微米)(pm) · 飞米(费米)(fm) · 阿米(am) · 仄米(zm) · 幺米(ym)
|
---|
| 市制 | 里 · 引 · 丈 · 尺 · 寸 · 分 · 厘 · 毫
|
---|
| 英制 | 英里(哩、咪)(mi) · 浪(furlong) · 鏈(chain) · 桿(rod) · 英寻(噚)(fathom) · 码(yd) · 英尺(呎)(ft) · 英寸(吋)(in)
|
---|
| 东亚传统 | 堂 · 里 · 引 · 丈 · 仞 · 尺、咫 · 寸 · 分 · 厘
(換算另見度量衡)
|
---|
| 天文學 | 秒差距(pc) · 光年(ly) · 天文單位(AU) · 月球距離(LD)
|
---|
| 台制 | |
---|
| 專屬單位 | 海里(浬)(NM, nm, nmi, n mile) · 埃(Å) · 点(pt) · 派卡(pc) · 條
|
---|
| 自然單位 | 普朗克長度 |
---|
|
enKZKVACRwIJKvch,F7CUfvXKQt3,C0Pmbax,NyMEbNSV2CAtx4brNUuSEU Y6TlGi1Xga3A FaOGgtBF
Popular posts from this blog
Ramiro Burr's New Blog - to go back: www.ramiroburr.com From Latin rock to reggaeton, boleros to blues,Tex-Mex to Tejano, conjunto to corridos and beyond, Ramiro Burr has it covered. If you have a new CD release, a trivia question or are looking for tour info, post a message here or e-mail Ramiro directly at: musicreporter@gmail.com Top Tejano songwriter Luis Silva dead of heart attack at 64 By Ramiro Burr on October 23, 2008 8:40 AM | Permalink | Comments (12) | TrackBacks (0) UPDATE: Luis Silva Funeral Service details released Visitation 4-9 p.m. Saturday, Rosary service 6 p.m. Saturday at Porter Loring, 1101 McCullough Ave Funeral Service 10:30 a.m. Monday St. Anthony De Padua Catholic Church, Burial Service at Chapel Hills, 7735 Gibbs Sprawl Road. Porter Loring (210) 227-8221 Related New Flash: Irma Laura Lopez: long time record promoter killed in accident NewsFlash: 9:02 a.m. (New comments below) Luis Silva , one of the most well-known ...
1 I having trouble getting my ResourceDictionary.MergedDictionaries to load from app.xaml. My WPF app has a static class with a Main defined and startup object set to it. Within Main I created an instance of App and run it. The override OnStartup fires and the mainwindow.cs InitializeComponent gives the error "Message "Cannot find resource named 'MaterialDesignFloatingActionMiniAccentButton'. If I put the resources in the mainwindow.xaml everything is fine, but I wanted them to load at the app level so I they are not in each page. Any help appreciated. public partial class App protected override void OnStartup(StartupEventArgs e) base.OnStartup(e); var app = new MainWindow(); var context = new MainWindowViewModel(); app.DataContext = context; app.Show(); from the Main.. var app = new App(); app.Run(); app.xaml.. <Application x:Class="GS.Server.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:...
up vote 2 down vote favorite There is a clear pattern that show for two separate subsets (set of columns); If one value is missing in a column, values of other columns in the same subset are missing for any row. Here is a visualization of missing data My tries up until now, I used ycimpute library to learn from other values, and applied Iterforest. I noted, score of Logistic regression is so weak (0.6) and thought Iterforest might not learn enough or anyway, except from outer subset which might not be enough? for example the subset with 11 columns might learn from the other columns but not from within it's members, and the same goes for the subset with four columns. This bar plot show better quantity of missings So of course, dealing with missings is better than dropping rows because It would affect my prediction which does contain the same missings quantity relatively. Any better way to deal with these ? [EDIT] The nullity pattern is confirmed: machine-learning cor...