In pandas, when removing data using str.split, how can I skip rows?










2















I have the following data:



Name X Y
AA:AA 0 0
AA:BB 1 1
AA:CC 2 2
GG:AB 3 3
GG:AC 4 4


How can I filter out 'AA' and the semicolon, but skip anything with GG?
I have used this to filter out the colon, and only keep the right side of the data, but for GG, I need to keep it as is



data['Name'] = data['Name'].str.split(":").str[1]









share|improve this question


























    2















    I have the following data:



    Name X Y
    AA:AA 0 0
    AA:BB 1 1
    AA:CC 2 2
    GG:AB 3 3
    GG:AC 4 4


    How can I filter out 'AA' and the semicolon, but skip anything with GG?
    I have used this to filter out the colon, and only keep the right side of the data, but for GG, I need to keep it as is



    data['Name'] = data['Name'].str.split(":").str[1]









    share|improve this question
























      2












      2








      2








      I have the following data:



      Name X Y
      AA:AA 0 0
      AA:BB 1 1
      AA:CC 2 2
      GG:AB 3 3
      GG:AC 4 4


      How can I filter out 'AA' and the semicolon, but skip anything with GG?
      I have used this to filter out the colon, and only keep the right side of the data, but for GG, I need to keep it as is



      data['Name'] = data['Name'].str.split(":").str[1]









      share|improve this question














      I have the following data:



      Name X Y
      AA:AA 0 0
      AA:BB 1 1
      AA:CC 2 2
      GG:AB 3 3
      GG:AC 4 4


      How can I filter out 'AA' and the semicolon, but skip anything with GG?
      I have used this to filter out the colon, and only keep the right side of the data, but for GG, I need to keep it as is



      data['Name'] = data['Name'].str.split(":").str[1]






      pandas numpy






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 16 '18 at 3:39









      wegunterjrwegunterjr

      768




      768






















          1 Answer
          1






          active

          oldest

          votes


















          2














          Use str.contains and work on slice as:



          mask = df['Name'].str.contains('GG')
          df.loc[~mask,'Name'] = df.loc[~mask,'Name'].str.split(':').str[1]

          print(df)
          Name X Y
          0 AA 0 0
          1 BB 1 1
          2 CC 2 2
          3 GG:AB 3 3
          4 GG:AC 4 4





          share|improve this answer
























            Your Answer






            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "1"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53331079%2fin-pandas-when-removing-data-using-str-split-how-can-i-skip-rows%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            Use str.contains and work on slice as:



            mask = df['Name'].str.contains('GG')
            df.loc[~mask,'Name'] = df.loc[~mask,'Name'].str.split(':').str[1]

            print(df)
            Name X Y
            0 AA 0 0
            1 BB 1 1
            2 CC 2 2
            3 GG:AB 3 3
            4 GG:AC 4 4





            share|improve this answer





























              2














              Use str.contains and work on slice as:



              mask = df['Name'].str.contains('GG')
              df.loc[~mask,'Name'] = df.loc[~mask,'Name'].str.split(':').str[1]

              print(df)
              Name X Y
              0 AA 0 0
              1 BB 1 1
              2 CC 2 2
              3 GG:AB 3 3
              4 GG:AC 4 4





              share|improve this answer



























                2












                2








                2







                Use str.contains and work on slice as:



                mask = df['Name'].str.contains('GG')
                df.loc[~mask,'Name'] = df.loc[~mask,'Name'].str.split(':').str[1]

                print(df)
                Name X Y
                0 AA 0 0
                1 BB 1 1
                2 CC 2 2
                3 GG:AB 3 3
                4 GG:AC 4 4





                share|improve this answer















                Use str.contains and work on slice as:



                mask = df['Name'].str.contains('GG')
                df.loc[~mask,'Name'] = df.loc[~mask,'Name'].str.split(':').str[1]

                print(df)
                Name X Y
                0 AA 0 0
                1 BB 1 1
                2 CC 2 2
                3 GG:AB 3 3
                4 GG:AC 4 4






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Nov 16 '18 at 4:41

























                answered Nov 16 '18 at 3:43









                Sandeep KadapaSandeep Kadapa

                7,388831




                7,388831





























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53331079%2fin-pandas-when-removing-data-using-str-split-how-can-i-skip-rows%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Top Tejano songwriter Luis Silva dead of heart attack at 64

                    政党

                    天津地下鉄3号線